Main Article Content

Abstract

Strategic system logistics business entails the importance of regulating truck pooling facilities and allocating the trucks for cost optimization goals. Regulators and investors must consider spatial constraints such as the supply-demand gap and service distance. Little attention has been paid to developing decision logistics models, particularly truck pooling and allocation decisions. In this study, the FFOA and GIS were used to determine the spatial component of truck pooling decisions, providing a scenario for origin pooling and delivery distance. The model evaluates truck allocation to each city, a distance vector, a spatial factor, and city demand are used for the cost optimization goal. The results show that the FFOA model successfully defines the optimal truck allocation for each truck pooling site with a cost. The managerial implication in developing a sharing economy concept for truck logistics is to use the study's framework model result to solve challenges in truck logistics.

Keywords

Trucks Pooling Trucks Allocation FFOA GIS Optimization Spatial

Article Details

How to Cite
Siahaan, B. P., Simatupang, T. M., Okdinawati, L., Yang, C.- kai, & Nugroho, D. (2022). Trucks Pooling and Allocation in TSE Concept Using GIS Spatial and Novel FFOA. Ilomata International Journal of Management, 3(4), 486-500. https://doi.org/10.52728/ijjm.v3i4.571

References

  1. Abdelazim, S., El-Hakim, M., Hossain, K., & Volovski, M. (2022). Pavement damage costs by truck class and economy of scale relative to increased loading. International Journal of Pavement Engineering, 23(6), 1970–1980. https://doi.org/10.1080/10298436.2020.1832221
  2. Abdelmagid, A. M., Gheith, M. S., & Eltawil, A. B. (2022). A comprehensive review of the truck appointment scheduling models and directions for future research. Transport Reviews, 42(1), 102–126. https://doi.org/10.1080/01441647.2021.1955034
  3. Akter, T., & Hernandez, S. (2022). Representative truck activity patterns from anonymous mobile sensor data. International Journal of Transportation Science and Technology. https://doi.org/10.1016/j.ijtst.2022.05.002
  4. Bouchery, Y., Hezarkhani, B., & Stauffer, G. (2022). Coalition formation and cost sharing for truck platooning. Transportation Research Part B: Methodological, 165, 15–34. https://doi.org/10.1016/j.trb.2022.08.007
  5. Boyko, C., Clune, S., Cooper, R., Coulton, C., Dunn, N., Pollastri, S., Leach, J., Bouch, C., Cavada, M., De Laurentiis, V., Goodfellow-Smith, M., Hale, J., Hunt, D., Lee, S., Locret-Collet, M., Sadler, J., Ward, J., Rogers, C., Popan, C., … Tyler, N. (2017). How Sharing Can Contribute to More Sustainable Cities. Sustainability, 9(5), 701. https://doi.org/10.3390/su9050701
  6. Cheng, J., & Shi, T. (2022). Structural optimization of transmission line tower based on improved fruit fly optimization algorithm. Computers and Electrical Engineering, 103, 108320. https://doi.org/10.1016/j.compeleceng.2022.108320
  7. Dai, H., Zhao, G., Lu, J., & Dai, S. (2014). Comment and improvement on “A new Fruit Fly Optimization Algorithm: Taking the financial distress model as an example.” Knowledge-Based Systems, 59, 159–160. https://doi.org/10.1016/j.knosys.2014.01.010
  8. Eckhardt, G. M., Houston, M. B., Jiang, B., Lamberton, C., Rindfleisch, A., & Zervas, G. (2019). Marketing in the Sharing Economy. Journal of Marketing, 83(5), 5–27. https://doi.org/10.1177/0022242919861929
  9. Geruna, H. A., Abdullah, N. R. H., Asril, M. Z., Mustafa, M., Samad, R., & Pebrianti, D. (2017). Fruit fly optimization (FFO) for solving economic dispatch problem in power system. 2017 7th IEEE International Conference on System Engineering and Technology (ICSET), 106–110. https://doi.org/10.1109/ICSEngT.2017.8123429
  10. Iscan, H., & Gunduz, M. (2014). Parameter Analysis on Fruit Fly Optimization Algorithm. Journal of Computer and Communications, 02(04), 137–141. https://doi.org/10.4236/jcc.2014.24018
  11. Islam, S. (2018). Simulation of truck arrival process at a seaport: evaluating truck-sharing benefits for empty trips reduction. International Journal of Logistics Research and Applications, 21(1), 94–112. https://doi.org/10.1080/13675567.2017.1353067
  12. Islam, S., & Olsen, T. (2014). Truck-sharing challenges for hinterland trucking companies. Business Process Management Journal, 20(2), 290–334. https://doi.org/10.1108/BPMJ-03-2013-0042
  13. Islam, S., Shi, Y., Ahmed, J. U., & Uddin, M. J. (2019). Minimization of empty container truck trips: insights into truck-sharing constraints. The International Journal of Logistics Management, 30(2), 641–662. https://doi.org/10.1108/IJLM-08-2018-0191
  14. Karkalos, N. E., Markopoulos, A. P., & Davim, J. P. (2019). Swarm Intelligence-Based Methods. In Computational Methods for Application in Industry 4.0 (1st ed., pp. 33–55). Springer Publishing Company. https://doi.org/10.1007/978-3-319-92393-2_3
  15. Küffner, C. (2022). Multi-level perspective for the development and diffusion of fuel cell heavy-duty trucks. Transportation Research Part D: Transport and Environment, 111, 103460. https://doi.org/10.1016/j.trd.2022.103460
  16. Li, Yancang, & Lian, S. (2018). Improved Fruit Fly Optimization Algorithm Incorporating Tabu Search for Optimizing the Selection of Elements in Trusses. KSCE Journal of Civil Engineering, 22(12), 4940–4954. https://doi.org/10.1007/s12205-017-2000-0
  17. Li, Yang, & Xu, F. (2022). Acoustic emission sources localization of laser cladding metallic panels using improved fruit fly optimization algorithm-based independent variational mode decomposition. Mechanical Systems and Signal Processing, 166, 108514. https://doi.org/10.1016/j.ymssp.2021.108514
  18. Mahmoodabadi, M. J., Rasekh, M., & Zohari, T. (2018). TGA: Team game algorithm. Future Computing and Informatics Journal, 3(2), 191–199. https://doi.org/10.1016/j.fcij.2018.03.002
  19. Marukawa, T. (2017). Sharing economy in China and Japan. The Japanese Political Economy, 43(1–4), 61–78. https://doi.org/10.1080/2329194X.2018.1555666
  20. Marzano, V., Tinessa, F., Fiori, C., Tocchi, D., Papola, A., Aponte, D., Cascetta, E., & Simonelli, F. (2022). Impacts of truck platooning on the multimodal freight transport market: An exploratory assessment on a case study in Italy. Transportation Research Part A: Policy and Practice, 163, 100–125. https://doi.org/10.1016/j.tra.2022.07.001
  21. Miller, S. R. (2015). First Principles for Regulating the Sharing Economy. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2568016
  22. Mitić, M., Vuković, N., Petrović, M., & Miljković, Z. (2015). Chaotic fruit fly optimization algorithm. Knowledge-Based Systems, 89, 446–458. https://doi.org/10.1016/j.knosys.2015.08.010
  23. Moeckel, R., & Donnelly, R. (2016). A model for national freight flows, distribution centers, empty trucks and urban truck movements. Transportation Planning and Technology, 39(7), 693–711. https://doi.org/10.1080/03081060.2016.1204091
  24. Mousavi, S. M., Alikar, N., Ghazilla, R. A. R., Tavana, M., & Olugu, E. U. (2017). A bi-objective multi-period series-parallel inventory-redundancy allocation problem with time value of money and inflation considerations. Computers & Industrial Engineering, 104, 51–67. https://doi.org/10.1016/j.cie.2016.12.006
  25. Osieczko, K., Zimon, D., Płaczek, E., & Prokopiuk, I. (2021). Factors that influence the expansion of electric delivery vehicles and trucks in EU countries. Journal of Environmental Management, 296, 113177. https://doi.org/10.1016/j.jenvman.2021.113177
  26. Pan, Q. K., Sang, H. Y., Duan, J. H., & Gao, L. (2014). An improved fruit fly optimization algorithm for continuous function optimization problems. Knowledge-Based Systems, 62, 69–83. https://doi.org/10.1016/j.knosys.2014.02.021
  27. Pan, W. T. (2012). A new Fruit Fly Optimization Algorithm: Taking the financial distress model as an example. Knowledge-Based Systems, 26, 69–74. https://doi.org/10.1016/j.knosys.2011.07.001
  28. Pan, W. T., Zhu, W. Z., Ma, F. X., Zhong, Z. C., & Yuan, X. F. (2017). Modified fruit fly optimization algorithm of logistics storage selection. The International Journal of Advanced Manufacturing Technology, 93(1–4), 547–558. https://doi.org/10.1007/s00170-017-0699-x
  29. Polo-López, L., Córcoles, J., & Ruiz-Cruz, J. (2018). Antenna Design by Means of the Fruit Fly Optimization Algorithm. Electronics, 7(1), 3. https://doi.org/10.3390/electronics7010003
  30. Poluru, R. K., & Kumar R, L. (2021). An Improved Fruit Fly Optimization (IFFOA) based Cluster Head Selection Algorithm for Internet of Things. International Journal of Computers and Applications, 43(7), 623–631. https://doi.org/10.1080/1206212X.2019.1600831
  31. Shudapreyaa, R. S., & Subramanian, A. (2016). Parameter Selection using Fruit Fly Optimization. I-Manager’s Journal on Computer Science, 3(4), 29. https://doi.org/10.26634/jcom.3.4.4831
  32. Siahaan, B. P., Simatupang, T. M., & Okdinawati, L. (2021). Modelling incentive policy on truck sharing economy concept: current state and literature review. International Journal of Logistics Systems and Management, 39(2), 185. https://doi.org/10.1504/IJLSM.2021.115484
  33. Standing, C., Standing, S., & Biermann, S. (2019). The implications of the sharing economy for transport. Transport Reviews, 39(2), 226–242. https://doi.org/10.1080/01441647.2018.1450307
  34. Sun, H., Li, W., Zheng, L., Ling, S., & Fu, W. (2022). Adaptive co-simulation method and platform application of drive mechanism based on Fruit Fly Optimization Algorithm. Progress in Nuclear Energy, 153, 104397. https://doi.org/10.1016/j.pnucene.2022.104397
  35. Ta, C. H., Kresta, J. V., Forbes, J. F., & Marquez, H. J. (2005). A stochastic optimization approach to mine truck allocation. International Journal of Surface Mining, Reclamation and Environment, 19(3), 162–175. https://doi.org/10.1080/13895260500128914
  36. Wang, C. L., & Li, S. W. (2018). Hybrid fruit fly optimization algorithm for solving multi-compartment vehicle routing problem in intelligent logistics. Advances in Production Engineering & Management, 13(4), 466–478. https://doi.org/10.14743/apem2018.4.304
  37. Wang, R. Y., Hu, P., Hu, C. H., & Pan, J. S. (2022). A novel Fruit Fly Optimization Algorithm with quasi-affine transformation evolutionary for numerical optimization and application. International Journal of Distributed Sensor Networks, 18(2), 155014772110730. https://doi.org/10.1177/15501477211073037
  38. Wu, L., Zuo, C., & Zhang, H. (2015). A cloud model based fruit fly optimization algorithm. Knowledge-Based Systems, 89, 603–617. https://doi.org/10.1016/j.knosys.2015.09.006
  39. Xing, B., & Gao, W. J. (2014). Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms (1st ed., Vol. 62). Springer International Publishing. https://doi.org/10.1007/978-3-319-03404-1
  40. Zhao, F., Ding, R., Wang, L., Cao, J., & Tang, J. (2021). A hierarchical guidance strategy assisted fruit fly optimization algorithm with cooperative learning mechanism. Expert Systems with Applications, 183, 115342. https://doi.org/10.1016/j.eswa.2021.115342