Main Article Content
Abstract
This research aims to predict the potential financial distress in companies with special notation on the Indonesia Stock Exchange during the period from January 1, 2021, to December 2022, using the Modified Altman Model (Z-Score) and the Springate Model (S-Score) approaches. Data for the study were obtained from the official website of the Indonesia Stock Exchange, employing purposive sampling as the sampling technique. Based on the criteria, a total of 280 research observations were obtained. The results indicate that both models can predict the potential financial distress of companies using financial ratios. Furthermore, the research findings reveal differences in the accuracy level of predicting potential financial distress between the Modified Altman Z-Score and Springate models. The Modified Altman Z-Score model demonstrates higher accuracy compared to the Springate model in predicting the potential financial distress of companies with special notation. This research provides important information for companies with special notation codes that experience financial distress, to immediately improve financial conditions, and provides a basis for strategic decision making to ensure the sustainability of the company and for investors and other interested parties can be used as a basis for investment decision making.
Keywords
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- Annafi, G. D., & Yudowati, S. P. (2021). Analisis Financial Distress, Profitabilitas, dan Materialitas Terhadap Kecurangan Laporan Keuangan. Jurnal Akuntansi Kompetif, 4(3), 255–262.
- Cındık, Z., & Armutlulu, I. H. (2021). A revision of Altman Z-Score model and a comparative analysis of Turkish companies’ financial distress prediction. National Accounting Review, 3(2), 237–255. https://doi.org/10.3934/nar.2021012
- Denhas, Y., & Subroto, B. (2014). Penggunaan Model Springate untuk Memprediksi Potensi Kebangkrutan Perusahaan (Studi Pada Perusahaan Sektor Food and Beverages yang Terdaftar di Bursa Efek Indonesia Pada Tahun 2011-2013). Jurnal Unviersitas Brawijaya Malang, 1–23.
- Dudley, E., Andrén, N., & Jankensgård, H. (2022). How do firms hedge in financial distress? Journal of Futures Markets, 42(7), 1324–1351. https://doi.org/10.1002/fut.22336
- Effendi, R. (2018a). Analisis Prediksi Kebangkrutan Dengan Metode Altman, Springate, Zmijewski, Foster, Dan Grover Pada Emiten Jasa Transportasi. Jurnal Parsimonia, 4(3), 307–318.
- Effendi, R. (2018b). Analisis Prediksi Kebangkrutan Dengan Metode Altman, Springate, Zmijewski, Foster, Dan Grover Pada Emiten Jasa Transportasi. Jurnal Parsimonia, 4(3), 307–318.
- Eliu, V. (2014). Pengaruh Financial Leverage dan Firm Growth terhadap Financial Distress. Finesta, 2.
- Friedl, G., & Drescher, F. (2013). Insolvency timing and managerial decision-making. Insolvency Timing and Managerial Decision-Making, 2004, 1–191. https://doi.org/10.1007/978-3-658-02819-0
- Gandhy, & Fardinal. (2019). Analysis of Financial Ratio to Predict Financial Distress Conditions ( Empirical Study on Manufacturing Companies listed on the Indonesia Stock Exchange for 2014-2017 ). International Journal of Business and Management Invention (IJBMI), 8(06), 27–34.
- Kartika, A., Abdul Rozak, H., Nurhayat, I., Daniel Bagana, B., Studi Manajemen, P., Bisnis, F., Stikubank, U., & Studi Akuntansi, P. (2020). Rasio Keuangan Sebagai Prediksi Financial Distress. Prosiding Sendi.
- Kisman, Z., & Krisandi, D. (2019a). How to Predict Financial Distress in the Wholesale Sector: Lesson from Indonesian Stock Exchange. Journal of Economics and Business, 2(3), 569–585. https://doi.org/10.31014/aior.1992.02.03.109
- Kisman, Z., & Krisandi, D. (2019b). How to Predict Financial Distress in the Wholesale Sector: Lesson from Indonesian Stock Exchange. Journal of Economics and Business, 2(3), 569–585. https://doi.org/10.31014/aior.1992.02.03.109
- Lestari, R. M. E., Situmorang, M., Pratama, M. I. P., & Bon, A. T. (2021a). Financial distress analysis using altman (Z-score), springate (S-Score), zmijewski (X-Score), and grover (G-Score) models in the tourism, hospitality and restaurant subsectors listed on the Indonesia stock exchange period 2015-2019. Proceedings of the International Conference on Industrial Engineering and Operations Management, 4249–4259.
- Lestari, R. M. E., Situmorang, M., Pratama, M. I. P., & Bon, A. T. (2021b). Financial distress analysis using altman (Z-score), springate (S-Score), zmijewski (X-Score), and grover (G-Score) models in the tourism, hospitality and restaurant subsectors listed on the Indonesia stock exchange period 2015-2019. Proceedings of the International Conference on Industrial Engineering and Operations Management, 4249–4259.
- Li, J., & Wang, C. (2023a). A deep learning approach of financial distress recognition combining text. In Electronic Research Archive (Vol. 31, Issue 8, pp. 4683–4707). aimspress.com. https://doi.org/10.3934/ERA.2023240
- Li, J., & Wang, C. (2023b). A deep learning approach of financial distress recognition combining text. In Electronic Research Archive (Vol. 31, Issue 8, pp. 4683–4707). aimspress.com. https://doi.org/10.3934/ERA.2023240
- López-Gutiérrez, C., Sanfilippo-Azofra, S., & Torre-Olmo, B. (2015). Investment decisions of companies in financial distress. BRQ Business Research Quarterly, 18(3), 174–187. https://doi.org/10.1016/j.brq.2014.09.001
- Martini, R., Raihana Aksara, R., Rachma Sari, K., Zulkifli, Z., & Hartati, S. (2023a). Comparison of Financial Distress Predictions With Altman, Springate, Zmijewski, and Grover Models. Golden Ratio of Finance Management, 3(1), 11–21. https://doi.org/10.52970/grfm.v3i1.216
- Martini, R., Raihana Aksara, R., Rachma Sari, K., Zulkifli, Z., & Hartati, S. (2023b). Comparison of Financial Distress Predictions With Altman, Springate, Zmijewski, and Grover Models. Golden Ratio of Finance Management, 3(1), 11–21. https://doi.org/10.52970/grfm.v3i1.216
- Munira, M., Satria, I., & Ayun, I. Q. (2021a). The Effectiveness of The Altman Z-Score and Springate Methods in Analyzing The Potential for Company Bankruptcy. International Journal of Business and Technology Management, 3(1), 63–78.
- Munira, M., Satria, I., & Ayun, I. Q. (2021b). The Effectiveness of The Altman Z-Score and Springate Methods in Analyzing The Potential for Company Bankruptcy. International Journal of Business and Technology Management, 3(1), 63–78.
- Nikmah, N., & Sulestari, D. D. (2021). Prediksi Financial Distress Untuk Perusahaan Besar Dan Kecil Di Indonesia Perbandingan Ohlson Dan Altman. Jurnal Fairness, 4(1), 37–60. https://doi.org/10.33369/fairness.v4i1.15299
- Nuswantara, D. A., Fachruzzaman, D. A., Prameswari, R. D., Suyanto, R. D., Rusdiyanto, R., & Hendrati, I. M. (2023). The role of political connection to moderate board size, woman on boards on financial distress. Cogent Business and Management, 10(1). https://doi.org/10.1080/23311975.2022.2156704
- Piatt, H. D., & Piatt, M. B. (2002). Predicting corporate financial distress: Reflections on choice-based sample bias. Journal of Economics and Finance, 26(2), 184–199. https://doi.org/10.1007/bf02755985
- Pulungan, D. R., & Hartini, T. (2018). METODE SPRINGATE DALAM ANALISA POTENSI KEBANGKRUTAN PERUSAHAAN PROPERTIDI INDONESIA. November.
- Purwaningsih, R. W., & Aziza, N. (2019). Pengaruh Corporate Social Responsbility Terhadap Financial Distress Dimoderasi Oleh Siklus Hidup Perusahaan Pada Tahap Mature. Jurnal Akuntansi, 9(3), 173–186. https://doi.org/10.33369/j.akuntansi.9.3.173-186
- Sari, D. W., Husaini, H., & Usman, D. (2021). Analisis Kinerja Keuangan Dan Financial Distress Perbankan Syariah Di Indonesia. Jurnal Fairness, 7(2), 79–96. https://doi.org/10.33369/fairness.v7i2.15148
- Spence michael. (1973). I shall argue that the paradigm case of the market with this type of informational structure is the job market and will therefore focus upon it . By the end I hope it will be clear ( although space limitations will not permit an extended argument ) that a. The Quarterly Journal of Economics, 87(3), 355–374.
- Studi, D. A. N. G., Mulyani, L., Luh, N., Erni, G., & Wahyuni, M. A. (2018). ANALISIS PERBANDINGAN KETEPATAN PREDIKSI FINAN- PADA PERUSAHAAN RETAIL YANG TERDAFTAR DI BURSA EFEK INDONESIA PERIODE 2015-2017 ). 139–150.
- Suidarma, I. M., Wayan, N., Widyari, T., Sudama, I. K., Arniti, N. K., & Marsudiana, I. D. N. (2022). Analysis of the Determining Factors of Financial Distress ( A Case Study at PT . Bank Rakyat Indonesia ( Persero ). 15(5), 21–29. https://doi.org/10.5539/ibr.v15n5p21
- Suranta, E., Satrio, M. A. B., & Midiastuty, P. P. (2023). Effect of Investment, Free Cash Flow, Earnings Management, Interest Coverage Ratio, Liquidity, and Leverage on Financial Distress. Ilomata International Journal of Tax and Accounting, 4(2), 283–295. https://doi.org/10.52728/ijtc.v4i2.714
- Tan, E., & Wibisana, T. A. (2020). A comparative Analysis Altman ( Z-Score ) Revision and Springate ( S- Score ) Model in Predicting Financial Distress in the Manufacturing Company - Indonesia Stock Exchange. 2(4).
- Widarjo, W., & Setiawan, D. (2009). Pengaruh Rasio Keuangan Terhadap Kondisi Financial Distress Perusahaan Otomotif. Jurnal Bisnis Dan Akuntansi, 11(2), 107–119.
- Zhu, J., Zhu, H., & Lin, N. (2023). A Dynamic Prediction Model of Financial Distress in the Financial Sharing Environment. 2023.